High-Rate Energy Storage Battery Liquid Cooling Scheme Based on Electric-Thermal-Fluid Coupling

1. Introduction

Energy storage technology is pivotal in revolutionizing global energy systems, particularly with the rapid adoption of renewable energy sources. Among various energy storage solutions, lithium-ion energy storage battery dominate due to their high energy density, long cycle life, and scalability. However, high-rate charging/discharging operations generate substantial heat, leading to elevated temperatures (>40°C) and thermal gradients within battery modules. These conditions degrade performance, accelerate aging, and pose safety risks such as thermal runaway. Thus, designing an efficient thermal management system (TMS) is critical for energy storage battery operating under high-rate conditions.

Existing cooling methods—air cooling, phase-change materials (PCM), immersion cooling, and heat pipes—struggle to meet the stringent thermal requirements of high-rate applications. Liquid cooling, with its superior heat transfer efficiency, emerges as a promising solution. This study investigates liquid cooling strategies for energy storage battery modules by establishing a multi-physics coupling model to optimize cold plate arrangements and coolant flow rates.


2. Electric-Thermal-Fluid Coupling Model

2.1 Geometric Configuration

The battery module comprises seven LiFePO₄ cells (3.2 V, 280 Ah), aluminum busbars, liquid cold plates, and interconnects. Nine cold plate configurations are evaluated (Table 1), including single/double large-surface plates, side plates (series/parallel), and combinations with bottom plates.

Table 1: Liquid Cooling Schemes

SchemeConfigurationDescription
1Bottom1 bottom plate
2Single large4 series large-surface plates
3Single large + bottom4 series large-surface + 1 bottom plate
4Double large8 series large-surface plates
5Double large + bottom8 series large-surface + 1 bottom plate
6Side series2 series side plates
7Side series + bottom2 series side + 1 bottom plate
8Side parallel2 parallel side plates
9Side parallel + bottom2 parallel side + 1 bottom plate

2.2 Mathematical Framework

The coupling model integrates electrothermal dynamics and fluid mechanics to simulate heat generation, conduction, and convective cooling.

2.2.1 Electrical Analysis
Steady-state current density (JJ) and electric field (EE) in busbars are governed by:∇⋅J=0(Continuity)∇⋅J=0(Continuity)∇×E=0(Faraday’s Law)∇×E=0(Faraday’s Law)

Joule heating power density (pp) is calculated as:p=J⋅Ep=JE

2.2.2 Thermal Analysis
Heat transfer includes conduction (Fourier’s Law) and convection (Newton’s Cooling):qcond=−k∇T(Conduction)qcond​=−kT(Conduction)qconv=hΔT(Convection)qconv​=hΔT(Convection)

2.2.3 Fluid Dynamics
Incompressible Navier-Stokes equations govern coolant flow:∇⋅v=0(Continuity)∇⋅v=0(Continuity)ρ(∂v∂t+v⋅∇v)=−∇P+μ∇2v(Momentum)ρ(∂tv​+v⋅∇v)=−∇P+μ∇2v(Momentum)ρCp(∂T∂t+v⋅∇T)=∇⋅(k∇T)(Energy)ρCp​(∂tT​+v⋅∇T)=∇⋅(kT)(Energy)

2.3 Boundary Conditions

  • Heat Sources: Each cell generates 33 W; busbar heat derived from Maxwell simulations.
  • Coolant: 50% ethylene glycol, inlet temperature 20°C.
  • Material Properties:

Table 2: Material Properties

MaterialDensity (kg/m³)Specific Heat (J/kg·K)Conductivity (W/m·K)
Cell21339649.04 (x-direction)
Coolant1071330011.00 (x-direction)
TIM300011500.384

3. Results and Discussion

3.1 Temperature Distribution

Simulations reveal that busbars, not cells, are the thermal hotspots due to their role in channeling heat to cold plates. Key findings:

  • Bottom Plate Only: Maximum temperature rise (TmaxTmax​) = 42 K (unsuitable for high-rate applications).
  • Double Large Plates: TmaxTmax​ = 14 K; adding a bottom plate reduces TmaxTmax​ to 13 K.
  • Side Series Plates: TmaxTmax​ = 14 K; with a bottom plate, TmaxTmax​ = 12 K.

3.2 Flow Rate Impact

Coolant flow rate (QQ) significantly affects thermal performance:

  • For Q<3 L/minQ<3L/min, increasing QQ reduces TmaxTmax​ and temperature gradient (RTRT​).
  • Beyond Q=3 L/minQ=3L/min, diminishing returns occur (e.g., TmaxTmax​ reduction < 0.6 K).

Table 3: Maximum Temperature Rise vs. Flow Rate

SchemeTmaxTmax​ at 1 L/min (K)TmaxTmax​ at 3 L/min (K)
Double large14.013.4
Double large + bottom13.012.8
Side series14.013.5
Side series + bottom12.011.7

3.3 Optimal Cooling Schemes

  • Double Large/Side Plates: Tmax<11 KTmax​<11K at Q=3 L/minQ=3L/min.
  • Single Large Plates: Tmax=15 KTmax​=15K (inferior to multi-plate configurations).
  • Bottom Plate Addition: Enhances cooling at Q<2 L/minQ<2L/min but offers marginal gains at higher QQ.

4. Experimental Validation

A prototype module (280 A, 1C rate) was tested under six configurations. Key outcomes:

  • Double Large Plates: Simulated vs. experimental TmaxTmax​ error < 0.9 K.
  • Side Series Plates: Error < 0.8 K.
  • Side Parallel Plates: Error < 0.6 K.

Table 4: Experimental vs. Simulated TmaxTmax​

SchemeSimulated TmaxTmax​ (K)Experimental TmaxTmax​ (K)Error (K)
Double large14.014.70.7
Side series + bottom12.012.50.5
Side parallel13.213.70.5

5. Conclusions

This study establishes a robust framework for optimizing liquid cooling in energy storage battery under high-rate conditions:

  1. Cold Plate Configuration: Double large-surface or side-series plates achieve Tmax<11 KTmax​<11K.
  2. Flow Rate: Q=3 L/minQ=3L/min balances cooling efficiency and energy consumption.
  3. Bottom Plates: Effective at Q<2 L/minQ<2L/min but redundant at higher flow rates.

Future work will explore dynamic heat generation, structural optimization of cold plates, and scalability to larger energy storage battery systems.

Scroll to Top